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Dynamics and Control of a Minimally Actuated Biomimetic

Vehicle:

Part I - Aerodynamic Model

David B. Doman ∗

Michael W. Oppenheimer †

David O. Sigthorsson ‡

An aerodynamic model for the forces and moments acting on a minimally

actuated flapping wing micro air vehicle (FWMAV) are derived from blade

element theory. The proposed vehicle is similar to the Harvard RoboFly

that accomplished the first takeoff of an insect scale flapping wing air-

craft, except that it is equipped with independently actuated wings and

the vehicle center-of-gravity can be manipulated for control purposes. Us-

ing a blade element-based approach, both instantaneous and cycle-averaged

forces and moments are computed for a specific type of wing beat motion

that enables nearly decoupled, multi-degree-of-freedom control of the air-

craft. The wing positions are controlled using oscillators whose frequencies

change once per wing beat cycle. A new technique is introduced, called

Split-Cycle Constant-Period Frequency Modulation, that has the desirable

property of providing a high level of control input decoupling for vehicles

without active angle-of-attack control. Like the RoboFly, the wing angle-of-

attack variation is passive by design, and is a function of the instantaneous

angular velocity of the wing in the stroke plane. A control-oriented dy-

namic model of the vehicle is derived, which is based on a cycle-averaged
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representation of the forces and moments. Control derivatives are calcu-

lated and a cycle-averaged control law is designed that provides control over

5 degrees-of-freedom of the vehicle.

I. Introduction

The first takeoff of an insect-scale flapping wing micro air vehicle was achieved by an

aircraft called RoboFly that was developed at Harvard University by Wood et.al.1 A key

feature that led to the successful first flight is that the vehicle was minimally actuated.

RoboFly uses a single bimorph piezoelectric actuator to impart symmetric stroke plane

motion to two wings. The wing angle-of-inclination with respect to the stroke plane is

passively regulated by wing flexure joints resulting in planform motion that is similar to

that of a dipterian insect. This passive rotation of the planform about the spar eliminates

the need for added weight and complexity associated with actuators that actively rotate the

planform about the spar. The first flight at Harvard resulted in unregulated flight up a pair

of wires that constrained the vehicle motion to vertical translation.

In the present paper, a vehicle concept and a control strategy, that would enable con-

trolled six-degree-of-freedom flight of the fuselage of an aircraft similar to the RoboFly

without the need for artificial motion constraints, are developed. A diagram of the proposed

vehicle is shown in Figure 1.
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Figure 1. General assembly of a minimally actuated flapping wing micro air vehicle.

The differences between the proposed aircraft and the Harvard RoboFly are that it would

be equipped with independently actuated wings and an actuated bob-weight that would allow

the vehicle center-of-gravity to be manipulated for control purposes. The wings rotate about

hinges at the wing root. A linkage based transmission translates the tangential motion of

the tip of a bimorph piezoelectric actuator into rotational motion of the wings in the stroke

plane. The linkage elements are designed to achieve impedance matching between the wing

and actuator forces as well as amplify the relatively small motion of the tip of the bimorph

strip into large angular displacements of the wing root. The planforms are connected to the

movable wing roots by a limited hinge joint that provides for passive rotation of the wing.

This hinge allows the wing to passively flip-over as the wing reverses direction at the end

of each stroke and enables the chord to rotate about the axis of the spar in a manner that

approximates the wing-twisting motion that has been observed in dipterian insects.2 As the

wing rotates through the stroke plane, dynamic pressure acting on the wing tends to cause it

to feather into the wind; however, as shown in Figure 2, the spar and root structure interfere

at an angle set by the designer to prevent the wing from over-rotating. This interference

causes the wing to hold a constant angle-of-attack relative to the stroke plane once a critical

dynamic pressure is reached.
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Figure 2. Detail of passive wing rotation joint.

The bimorph piezoelectic actuators and the carbon fiber substrate to which they are

mounted are cantilevered to the fuselage. In the case of the wings, the actuator assembly

and linkage, together with the wing, form a spring-mass-damper system that has a known

resonant frequency. The actuator assembly for the bob-weight is simply used to control

the mean pitch attitude of the fuselage. In the single actuator Harvard experiments, the

dynamic system was driven at resonance3 for maximum energy efficiency to achieve flight.

In the present problem, each wing-linkage-actuator system is nominally driven at a hover

frequency that is defined as the frequency at which the cycle-averaged lift is equal to the

weight of the aircraft. The term hover is to be interpreted in a time-averaged sense because

as we will show, the aircraft is in constant motion due to the periodic nature of the forces

and moments produced by the flapping wings. The closest approximation of hover that can

be achieved is that of a high frequency, low amplitude limit cycle about a mean position.4

Using a blade element based aerodynamic model and time averaging, it will be shown

that 5 independent degrees of freedom can be controlled and that the 6th degree-of-freedom

can be manipulated by coordinated motion of a subset of the 5 degrees of freedom. The wing

angle-of-attack variation is passive and is a function of the instantaneous angular velocity of

the wing in the stroke plane. The control laws are therefore designed to make use of three

actuators, two of which control the angular position of the wing in the stroke plane and one

that moves a bob-weight that manipulates the vehicle center-of-gravity. A technique called

Split-Cycle Constant-Period Frequency Modulation is proposed that allows each wing to

generate non-zero cycle-averaged rolling and yawing moments as well as translational forces

that can accelerate the vehicle forwards and backwards while maintaining a wingbeat forcing

function that keeps the wing-actuator dynamics operating near the hover frequency. The

split-cycle technique achieves this objective by varying the frequency of the oscillators that

drive the wing position actuators, such that the dynamic pressure acting on the wing during
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the forestroke is different from that acting on the aftstroke. Pitching moment and high speed

translation are controlled by varying the vehicle center-of-gravity.

A. Preliminary Assumptions

The purpose of this investigation is to derive an idealized model that will allow one to study

the dynamic behavior of the aircraft under consideration and to formulate and test control

strategies using non-real-time simulations. This objective limits the fidelity of the aerody-

namic and structural models that can be used. The use of computational fluid dynamics and

finite element structural codes would be computationally intractable for a simulation of this

type and would likely impede physical insights that would allow one to formulate a control

law and observe key vehicle design features. In light of the above objective, the following

assumptions are made:

• There are no aerodynamic interactions between the left and right wings.

• There are no aerodynamic interactions between the wings and the fuselage.

• The 2D sectional aerodynamic coefficients are known and constant throughout each

stroke. Three dimensional and unsteady effects from leading edge vortex and wake

phenomena are not present.

• The passive wing rotation joint is on a limit when the wing angular velocity in the

stroke plane is non-zero.

• The air mass surrounding the vehicle is quiescent.

• Aerodynamic forces and moments are the sole result of wing motion, i.e., only flight

conditions in the neighborhood of hover are considered.

• The bandwidth of the piezoelectric actuators exceeds the hover frequency.

II. Coordinate Frame Definitions

The dynamic analysis of the vehicle requires the use of several coordinate frames. This

is because the signs of aerodynamic forces and moments differ from the right wing to the

left. Furthermore, the signs of the forces and moments are dependent upon the direction

of the wing stroke, i.e., upstroke or downstroke. The aerodynamic forces and moments

can be conveniently written in certain intermediate frames; however, it will be necessary to

transform these parameters into a body-fixed and ultimately an inertial coordinate frame

in order to write the equations of motion of the fuselage. Definitions of the numerous
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coordinate frames and rotation matrices required in this analysis are provided in Tables 1

and 2, respectively. The coordinate frame and angle definitions are illustrated in Figure 3.
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Figure 3. Relationship between, body, root, spar, left and right wing planform axis systems

on upstroke.

A system of notation has been selected where superscripts “cancel” subscripts when

multiplying rotation matrices. For vector quantities, superscripts identify the coordinate

frame in which the quantities are expressed, while subscripts identify the quantity.
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Frame Symbol Feature Location/Sense

B

Origin Nominal Center of Gravity

Body xB axis (+) Anterior Normal to Stroke Plane

(Fixed to Fuselage) yB axis (+) Right Hand Side

zB axis (+) Ventral Side

I

Origin Initially Coincident with Body Center-of-Gravity

Inertial xI axis (+) Initially Aligned with xB axis

(Fixed to Flat Earth) yI axis (+) Initially Aligned with yB axis

zI axis (+) Initially Aligned with zB axis

RWR

Origin RW Root Hinge Point

RW Root xRWR axis (+) in xB dir.

(Fixed to Fuselage) yRWR axis (+) in yB dir.

zRWR axis (+) in zB dir.

LWR

Origin LW Root Hinge Point

LW Root xLWR axis (+) in xB dir.

(Fixed to Fuselage) yLWR axis (+) in yB dir.

zLWR axis (+) in zB dir.

RWS

Origin RW Root Hinge Point

RW Spar xRWS axis (+) Towards ventral side at φRW = 0

(Rotates with RW Spar) yRWS axis (+) Proximal to distal, coincident c RW spar

zRWS axis (+) Towards posterior of fuselage

LWS

Origin LW Root Hinge Point

LW Spar xLWS axis (+) Towards dorsal side at φLW = 0

(Rotates with LW Spar) yLWS axis (+) Proximal to distal, coincident c spar

zLWS axis (+) Towards posterior of fuselage

RWPU

Origin RW Root Hinge Point

RW Planform Upstroke xRWPU axis (+) Direction of wing rotation

(Aligned c RW yRWPU axis (+) Proximal to distal, coincident c RW spar

Plane on Upstroke) zRWPU axis (+) anterior, completes RH coord. sys

RWPD

Origin RW Root Hinge Point

RW Planform Downstroke xRWPD axis (+) Direction of wing rotation

(Aligned c RW yRWPD axis (+) Proximal to distal, coincident c RW spar

Plane on Downstroke) zRWPD axis (+) posterior, completes RH coord. sys

LWPU

Origin LW Root Hinge Point

LW Planform Upstroke xLWPU axis (+) Direction of wing rotation

(Aligned c LW yLWPU axis (+) Proximal to distal, coincident c LW spar

Plane on Upstroke) zLWPU axis (+) posterior, completes RH coord. sys

LWPD

Origin LW Root Hinge Point

LW Planform Downstroke xLWPD axis (+) Direction of wing rotation

(Aligned c LW yLWPD axis (+) Proximal to distal, coincident c LW spar

Plane on Downstroke) zLWPD axis (+) anterior, completes RH coord. sys

Table 1. Coordinate Frame Definitions.
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From To Stroke Symbol Rotation Matrix

RW & LW Root Body Either RB
R RB

RWR = RB
LWR = I

RW Spar RW Root Either RRWR
RWS







0 0 −1

− sin φRW cos φRW 0

cos φRW sin φRW 0







LW Spar LW Root Either RLWR
LWS







0 0 −1

− sin φLW − cos φLW 0

− cos φLW sin φLW 0







RW Planform Upstroke RW Spar Up RRWS
RWPU







− cos α 0 sin α

0 1 0

− sin α 0 − cos α







RW Planform Downstroke RW Spar Down RRWS
RWPD







cos α 0 sin α

0 1 0

− sin α 0 cos α







LW Planform Upstroke LW Spar Up RLWS
LWPU







cos α 0 sin α

0 1 0

− sin α 0 cos α







LW Planform Downstroke LW Spar Down RLWS
LWPD







− cos α 0 sin α

0 1 0

− sin α 0 − cos α







Table 2. Transformation Matrices.

III. Aerodynamic Model of Flapping Wing Vehicle with

Independently Actuated Wings

A. Instantaneous Aerodynamic Forces and Centers of Pressure in Wing Plan-

form Frames

The aerodynamic forces are derived, using blade element theory, for triangular shaped wings

that have two degrees of freedom, namely, angular displacement, φ(t), about the wing root in

the stroke plane, and angular displacement of the planform about the passive rotation hinge

joint, which is equivalent to wing angle-of-attack, α, in still air. The triangular planform

wing, shown in Figure 4, is taken to be a rigid flat plate whose elemental lift and drag at a

spanwise location yWP is given by:

dL =
ρ

2
CL(α)φ̇2y2

WPc(yWP )dyWP (1)
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dD =
ρ

2
CD(α)φ̇2y2

WP c(yWP )dyWP (2)

where c(yWP ) is the chord at the spanwise location yWP , which is a location on the wing

spar. Now compute the total lift and drag on the wing expressed in a wing planform fixed

coordinate system, e.g., RWPU, RWPD, LWPU, and LWPD. Such a coordinate frame has an

origin at the wing root hinge point and the x-y plane is coincident with the wing planform.

The lift is computed by integrating the elemental lift over the span according to

WPdy

)( WPyc

R

Spar

Root,

Center of Rotation

WPy

WPx

WPy

WPx

WP

cpy

WP

cpx

Figure 4. Blade element computation of aerodynamic forces, moments and centers of pressure.

L =

∫ R

0

dL =
ρ

2
CL(α)φ̇(t)2IA (3)

Similarly, drag is computed according to

D =

∫ R

0

dD =
ρ

2
CD(α)φ̇(t)2IA (4)

where IA is the area moment of inertia of the planform about the root and R is the length of

the wing. For convenience all of the time invariant parameters are lumped together according

to

kL
△

=
ρ

2
CL(α)IA

kD
△

=
ρ

2
CD(α)IA

(5)
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thus, lift and drag can be expressed as the product of time invariant parameters and time

varying functions

L = kLφ̇(t)2

D = kDφ̇(t)2
(6)

The following expressions for lift and drag coefficients,5 which were obtained from low

Reynolds Number experiments, are used in this work

CD(α) = 1.92 − 1.55 cos(2.04α − 9.82)

CL(α) = 0.225 + 1.58 sin(2.13α − 7.2)
(7)

where α is in degrees. Note that the only variable that can be actively manipulated to control

the instantaneous aerodynamic forces is the angular velocity of the wing φ̇(t) and that the

forces are quadratic functions of this motion variable. The center of pressure in the plane

of each wing must be obtained in order to compute moments on the fuselage. The center

of pressure location for each wing in their respective local wing planform coordinate frame,

namely RWPU, RWPD, LWPU, or LWPD, are:

xWP
cp =

∫ R

0
y2

WP
1
2
c(yWP )2dyWP

∫ R

0
y2

WP c(yWP )dyWP

=
−c

5

(

3b2 + 2bR + R2

b2 + bR + R2

)

(8)

yWP
cp =

∫ R

0
y3

WPc(yWP )dyWP
∫ R

0
y2

WPc(yWP )dyWP

=
3

5

(

b3 + b2R + bR1 + R3

3b2 + 2bR + R2

)

(9)

zWP
cp = 0 (10)

where WP denotes any of the four local wing planform coordinate systems, b is the distance

from the wing root to the wing break along the yWP axis, and c is the maximum chord of

this wing.

B. Expression of Aerodynamic Forces and Centers of Pressure in Body Frame

With the relationships between the body, roots, spars, upstroke planform and downstroke

planform axis systems established in Tables 1 and 2, the instantaneous values of lift and

drag on each wing are transformed into the body-axis coordinate frame. Recall that lift is

defined as the component of aerodynamic force perpendicular to the relative wind, while

drag is defined as the component of aerodynamic force parallel to the relative wind. If

the air mass is quiescent, then the relative wind is parallel to the stroke plane, which is

coincident with the x-y planes of the local spar-frames. Therefore, the lift and drag forces

are conveniently expressed in the spar coordinate frames, which can be transformed to the
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body frame using the rotation matrices defined in Table 2. For example, to express the

aerodynamic force vector associated with the right wing on the upstroke in the body-frame,

the following transformation is applied

FB
RWU = RB

RWRRRWR
RWSFRWS

RWU (11)

The aerodynamic forces associated with each wing and stroke expressed in both the spar

and body frames are summarized in Table 3.

Force Local Spar Frame Body Frame

RW Upstroke FRWS
RWU =









DRWU

0

−LRWU









FB
RWU =









LRWU

−DRWU sin φRWU(t)

DRWU cos φRWU(t)









RW Downstroke FRWS
RWD =









−DRWD

0

−LRWD









FB
RWD =









LRWD

DRWD sin φRWD(t)

−DRWD cos φRWD(t)









LW Upstroke FLWS
LWU =









−DLWU

0

−LLWU









FB
LWU =









LLWU

DLWU sin φLWU(t)

DLWU cos φLWU(t)









LW Downstroke FLWS
LWD =









DLWD

0

−LLWD









FB
LWD =









LLWD

−DLWD sin φLWD(t)

−DLWD cos φLWD(t)









Table 3. Aerodynamic forces expressed in local spar and body frames.

The center of pressure on each wing is conveniently expressed in the local wing planform

frame associated with each stroke. To calculate the center of pressure in the body frame

three coordinate frame rotations and one translation must be performed. One rotation is

trivial because the root and body systems are parallel. The translation is associated with

the distance between the origin of the body frame and the origin of each wing root frame.

For example, for the right wing upstroke, the center of pressure location in the body frame

is given by

rcp

B
RWU

= RB
RWRRRWR

RWSRRWS
RWPUrcp

RWPU
RWU

+ ∆rB
R (12)

where ∆rB
R is the position vector from the origin of the body axes coordinate system to the
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origin of the right wing root coordinate system, i.e.,

∆rB
R

△

= rB
oRWR

=
[

∆xB
R

w
2

∆zB
R

]

∆rB
L

△

= rB
oLWR

=
[

∆xB
L −w

2
∆zB

L

] (13)

The width of the vehicle is designed as w and the origin of the body axis coordinate system

is assumed to be located at the midpoint of the fuselage in the y-body axis direction. The

centers of pressure associated with each wing and stroke, expressed in the body frame, are

summarized in Table 4.

CP Location Body Frame Expression

RW Upstroke rcp
B
RWU

=









xWP
cp sin α + ∆xB

R

xWP
cp sin φRW cos α + yWP

cp cos φRW + w
2

−xWP
cp cos φRW cos α + yWP

cp sin φRW + ∆zB
R









RW Downstroke rcp
B
RWD

=









xWP
cp sin α + ∆xB

R

−xWP
cp sin φRW cos α + yWP

cp cos φRW + w
2

xWP
cp cos φRW cos α + yWP

cp sin φRW + ∆zB
R









LW Upstroke rcp
B
LWU

=









xWP
cp sin α + ∆xB

L

−xWP
cp sin φLW cos α − yWP

cp cos φLW − w
2

−xWP
cp cos φLW cos α + yWP

cp sin φLW + ∆zB
L









LW Downstroke rcp
B
LWD

=









xWP
cp sin α + ∆xB

L

xWP
cp sin φLW cos α − yWP

cp cos φLW − w
2

xWP
cp cos φLW cos α + yWP

cp sin φLW + ∆zB
L









Table 4. Centers of pressure expressed in body frame.

IV. Aerodynamic Moments in Body Frame

The expressions for the aerodynamic moments associated with each wing and stroke are

given by

MB
RWU = rcp

B
RWU

× FB
RWU

MB
RWD = rcp

B
RWD

× FB
RWD

MB
LWU = rcp

B
LWU

× FB
LWU

MB
LWD = rcp

B
LWD

× FB
LWD

(14)
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Carrying out the cross product operations and substituting the values from Tables 3 and 4

into the expressions in Equation 14 yields

MB
RWU =





















DRWU

[

yWP
cp + w

2
cos φRW + ∆zB

R sin φRW

]

{

LRWU

[

yWP
cp sin φRW + ∆zB

R

]

− DRWU∆xB
R cos φRW − . . .

[LRWU cos α + DRWU sin α]xWP
cp cos φRW

}

{

−DRWU∆xB
R sin φRW − LRWU

[

w
2

+ yWP
cp cos φRW

]

− . . .

[LRWU cos α + DRWU sin α] xWP
cp sin φRW

}





















(15)

MB
RWD =





















−DRWD

[

yWP
cp + w

2
cos φRW + ∆zB

R sin φRW

]

{

LRWD

[

yWP
cp sin φRW + ∆zB

R

]

+ DRWD∆xB
R cos φRW + . . .

[LRWD cos α + DRWD sin α] xWP
cp cos φRW

}

{

DRWD∆xB
R sin φRW − LRWD

[

w
2

+ yWP
cp cos φRW

]

+ . . .

[LRWD cos α + DRWD sin α]xWP
cp sin φRW

}





















(16)

MB
LWU =





















DLWU

[

−yWP
cp − w

2
cos φLW − ∆zB

L sin φLW

]

{

LLWU

[

yWP
cp sin φLW + ∆zB

L

]

− DLWU∆xB
L cos φLW − . . .

[LLWU cos α + DLWU sin α] xWP
cp cos φLW

}

{

DLWU∆xB
L sin φLW + LLWU

[

w
2

+ yWP
cp cos φLW

]

+ . . .

[LLWU cos α + DLWU sin α]xWP
cp sin φLW

}





















(17)

MB
LWD =





















DLWD

[

yWP
cp + w

2
cos φLW + ∆zB

L sin φLW

]

{

LLWD

[

yWP
cp sin φLW + ∆zB

L

]

+ DLWD∆xB
L cos φLW + . . .

[LLWD cos α + DLWD sin α]xWP
cp cos φLW

}

{

−DLWD∆xB
L sin φLW + LLWD

[

w
2

+ yWP
cp cos φLW

]

− . . .

[LLWD cos α + DLWD sin α] xWP
cp sin φLW

}





















(18)

Equations 15-18 provide the expressions for the instantaneous aerodynamic moments gener-

ated by each wing at any point in a wing beat cycle in the body-axis coordinate frame.

V. Split-Cycle Constant-Period Frequency Modulation Control

Strategy

Because the vehicle is designed to mimic dipterian insect flight, φ̇ must be a time varying

function that is equal to zero at the extreme limits of wing position. It is assumed that the

wing position in the stroke plane can be controlled directly via a high bandwidth piezoelectric

bimorph actuator. This assumption approximates the physics of applying a voltage to a
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bimorph piezoelectric actuator that imparts rotational motion to a wing via a linkage that

consists of rigid elements connected by pin joints. The forcing function that drives the

rotation of each wing is selected as

φ = cos ωt (19)

As defined in Figure 3, the maximum value of this angle occurs when either wing reaches its

maximum displacement towards the ventral side of the vehicle. Assuming that the frequency

of the oscillating wing is held constant over the segment of interest for each wingbeat cycle,

the angular velocity of the wing is given by

φ̇ = −ω sin ωt (20)

Note that the units of φ are in radians and that the amplitude of the wing rotation in the

stroke plane is taken to be ±1 rad, which closely approximates the rotation limits used in

the Harvard RoboFly. The frequency of the oscillator that drives the actuator is selected

as the control input variable to enable multi-degree-of-freedom flight, and this frequency is

allowed to change at key points in the wingbeat cycle, namely at the ends of the stroke

when φ = 1, φ̇ = 0 and φ = −1, φ̇ = 0. In a companion paper concerning 1 degree-of-

freedom (DOF) flight,4 it was shown that, if the wingbeat frequency is held constant over

each cycle, then the cycle-averaged longitudinal force along the x-body axis was always finite

and positive, while the cycle-averaged z-body force was always zero. Such conditions made

it possible to achieve a practical condition that approximates hover4 and allows altitude

tracking; however, in order to enable a vehicle to achieve multi-DOF flight, an additional

control input variable must be introduced. In the interest of maintaining the simplicity of the

actuation system, the controllability of a vehicle equipped only with independently actuated

wings with passive rotation about the chord is examined. In order to achieve a non-zero

time averaged body force in the z-direction, subject to the imposed actuation constraint,

the blade element velocities must be asymmetric over the wing beat cycle. Although there

are many ways to accomplish this, the waveforms that define the motion of the wing in the

stroke plane are parameterized such that the frequencies of the upstroke and downstroke

can be modified while maintaining the original period. This technique is called Split-Cycle

Constant-Period Frequency Modulation. Each wing will be driven by a position command

of the following form

φU(t) = cos [(ω − δ)t], 0 ≤ t < π
(ω−δ)

(21)

φD(t) = cos [(ω + σ)t + ξ], π
(ω−δ)

≤ t < 2π
ω

(22)
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where the φU(t) and φD(t) represent the angular position command associated with a given

wing on the upstroke and downstroke, respectively, δ is the split-cycle parameter,

σ
△

=
δω

ω − 2δ
(23)

and the phase shift on downstroke is given by

ξ =
−2πδ

ω − 2δ
(24)

The phase shift enforces the compatibility condition where the frequency of the waveform

changes, i.e.,

(ω + σ)t|t= π

ω−δ
+ ξ = π (25)

Note that the split-cycle parameter, δ, and the fundamental frequency, ω, are control input

variables and that σ is defined such that the wing beat cycle is completed at exactly the

same time as it would be if the wing beat were temporally symmetric, i.e., δ = σ = 0. The

angular velocity of each wing over each split-cycle interval is given by

φ̇U(t) = −(ω − δ) sin [(ω − δ)t], 0 ≤ t < π
(ω−δ)

(26)

φ̇D(t) = −(ω + σ) sin [(ω + σ)t + ξ], π
(ω−δ)

≤ t < 2π
ω

(27)

VI. Cycle-Averaging

The control strategies proposed in this paper are based on the assumption that the band-

width of the fuselage controller is much less than the trim flapping frequency required for

hover. If a non-oscillatory control force and inertial measurements were available for feed-

back, one could use conventional control design techniques to synthesize feedback control laws

that produce favorable closed loop responses. Here, time varying high frequency oscillatory

control inputs must be used; therefore, the relationship between the cycle-averaged forces

and moments and the control input parameters, namely ωLW , δLW , ωRW and δRW , which are

the fundamental frequency and split-cycle parameters for the left and right wings, respec-

tively, are computed. Feedback control laws based on cycle-averaged forces and moments

will allow a vehicle to track desired angular and spatial positions in a mean sense; however,

because of the true periodic nature of the aerodynamic forces, the vehicle will exhibit limit

cycle behavior in a neighborhood about the mean position. The objective of this work is to

develop controllers that drive the vehicle to a desired mean position and orientation.

The general method used to compute the cycle-averaged aerodynamic forces and their

sensitivities to variations in the control input parameters will now be described. Define
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G(t) to be a generalized force aligned with a principal body-axis direction that may repre-

sent either a force or a moment. In order to compute the cycle-averaged generalized force

associated with each wing, an integral of the following form is evaluated

G =
ω

2π

∫ 2π

ω

0

G(t)dt (28)

Since the introduction of the split-cycle parameter changes the frequency of the cosine wave

when (ω − δ)t = π in each cycle, it is convenient to split the integral as follows

G =
ω

2π

[

∫ π

ω−δ

0

G(φU(t))dt +

∫ 2π

ω

π

ω−δ

G(φD(t))dt

]

(29)

The control derivatives associated with a generalized time-averaged force are calculated by

computing the partial derivative with respect to each control input variable about the hover

frequency ωo.

G∆ωl
=

∂G

∂ωl

∣

∣

∣

∣

ωl=ωo,δl=0

(30)

Gδl
=

∂G

∂δl

∣

∣

∣

∣

ωl=ωo,δl=0

(31)

G∆ωr
=

∂G

∂ωr

∣

∣

∣

∣

ωr=ωo,δr=0

(32)

Gδr
=

∂G

∂δr

∣

∣

∣

∣

ωr=ωo,δr=0

(33)

These control derivatives will ultimately be used to design the control allocation portion of

a 6 DOF control law for the flapping wing MAV.

VII. Definite Integrals for Computation of Time Averaged

Aerodynamic Forces and Moments

In order to calculate the cycle-averaged forces and moments, it will be necessary to

evaluate numerous integrals. Many have no indefinite integral solutions. For example, many

of the integrands will be of the form cos(cos ωt) or sin(cos ωt). These terms arise because of

the coordinate transformations of forces from local frames to the body frame and because

of the fact that a cosine function was chosen to drive the position of the wing. Fortunately,

definite integrals involving such functions exist over the intervals of interest for the present

problem and can be derived from results presented in Gradshteyn & Ryzhik.6 The solution
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of many of these definite integrals involve a Bessel function of the first kind, J1(x), as well

as Struve functions. The integrals involving Struve functions evaluate to zero over the limits

of integration that arise in the formulation of this particular problem. For convenience, the

solutions to the definite integrals that are required to compute the cycle-averaged forces and

moments are provided below.

I1
△

=

∫ π

ω−δ

0

sin2 [(ω − δ)t] dt =
π

2(ω − δ)
(34)

I2
△

=

∫ π

ω−δ

0

sin2 [(ω − δ)t] sin (cos [(ω − δ)t]) dt = 0 (35)

I3
△

=

∫ π

ω−δ

0

sin2 [(ω − δ)t] cos (cos [(ω − δ)t]) dt =
πJ1(1)

(ω − δ)
(36)

I4
△

=

∫ 2π

ω

π

ω−δ

sin2 [(ω + σ)t + ξ] dt =
π

2(ω + σ)
(37)

I5
△

=

∫ 2π

ω

π

ω−δ

sin2 [(ω + σ)t + ξ] sin (cos [(ω + σ)t + ξ]) dt = 0 (38)

I6
△

=

∫ 2π

ω

π

ω−δ

sin2 [(ω + σ)t + ξ] cos (cos [(ω + σ)t + ξ]) dt =
πJ1(1)

ω + σ
(39)

VIII. Cycle Averaged Forces

In this section, the cycle-averaged aerodynamic forces are evaluated. These forces are

integrated with respect to time as each wing operates over an upstroke and downstroke.

Later, the forces are used in the development of a control law by evaluating the change in

cycle-averaged forces with respect to a change in the control input variables.

A. X Force

Substituting the expression for the instantaneous x-body force from Table 3 into Equation 29

produces

X
B

RW =
ωRW

2π

[

∫ π

ωRW −δRW

0

LRWU(t)dt +

∫ 2π

ωRW

π

ωRW −δRW

LRWD(t)dt

]

(40)
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Substituting Equations 6, 26, and 27 into Equation 40 yields

X
B

RW =
kLωRW

2π

[

∫ π

ωRW −δRW

0

(ωRW − δRW )2 sin2[(ωRW − δRW )t]dt+

∫ 2π

ωRW

π

ωRW −δRW

(ωRW + σRW )2 sin2[(ωRW + σRW )t + ξRW ]dt

] (41)

Noting that the time varying functions under the integral signs are of the form I1 and I4 as

given by Equations 34 and 37, respectively, Equation 41 can be written as

X
B

RW =
kLωRW

2π

[

(ωRW − δRW )2I1 + (ωRW + σRW )2I4

]

(42)

or simply

X
B

RW =
kLωRW

4
(2ωRW − δRW + σRW ) (43)

Following a similar procedure for the left wing, it can be shown that

X
B

LW =
kLωLW

4
(2ωLW − δLW + σLW ) (44)

Note that both X
B

RW and X
B

LW are positive quantities. At a hover condition, where the

x-body axis is normal to the surface of the earth, the forces produced by both wings act

to counter the vehicle weight. It is also worthwhile to note that because of the geometric

constraints imposed by the passive wing rotation joints shown in Figure 2, the instantaneous

x-body force is always positive or zero which directs the force along the positive longitudinal

axis of the vehicle.

B. Y Force

In order to compute the cycle-averaged y-body force for each wing, substitute the expression

for the instantaneous y-body aerodynamic force from Table 3 into Equation 29 to obtain

Y
B

RW =
ωRW

2π

[

∫ π

ωRW −δRW

0

−DRWU(t) sin[φRW (t)]dt +

∫ 2π

ωRW

π

ωRW −δRW

DRWD(t) sin[φRW (t)]dt

]

(45)
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Substituting Equations 6, 21, 22, 26, and 27, into Equation 45 produces

Y
B

RW =
kDωRW

2π

[

−

∫ π

ωRW −δRW

0

(ωRW − δRW )2 sin2[(ωRW − δRW )t] sin (cos[(ωRW − δRW )t]) dt+

∫ 2π

ωRW

π

ωRW −δRW

(ωRW + σRW )2 sin2[(ωRW + σRW )t + ξRW ] sin (cos[(ωRW + σRW )t + ξRW ]) dt

]

(46)

Noting that the time varying functions under the integral signs are of the form I2 and I5 as

given by Equations 35 and 38 respectively, Equation 46 becomes

Y
B

RW = 0 (47)

Following a similar procedure for the left wing, it can be shown that

Y
B

LW = 0 (48)

Physically, this is a result of the fact that the component of drag pointing in the y-body

direction points the same amount of time in the positive direction and at the same magnitude

as it points in the negative y-body direction over the course of a wing beat cycle. Note that if

a non-zero cycle-averaged force in the y direction were required, the frequency of the driving

oscillator would have to be varied over finer intervals within each wing beat cycle. In other

words, the wing beat frequency would have to be changed more than once per cycle.

C. Z Force

The calculation of the cycle-averaged force in the z-body direction follows a similar procedure.

Substituting the expression for the instantaneous z-body aerodynamic force from Table 3 into

Equation 29 we obtain:

Z
B

RW =
ωRW

2π

[

∫ π

ωRW −δRW

0

DRWU(t) cos[φRW (t)]dt +

∫ 2π

ωRW

π

ωRW −δRW

−DRWD(t) cos[φRW (t)]dt

]

(49)
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Substituting Equations 6, 21, 22, 26, and 27 into Equation 49 yields

Z
B

RW =
kDωRW

2π

[

∫ π

ωRW −δRW

0

(ωRW − δRW )2 sin2[(ωRW − δRW )t] cos (cos[(ωRW − δRW )t]) dt−

∫ 2π

ωRW

π

ωRW −δRW

(ωRW + σRW )2 sin2[(ωRW + σRW )t + ξRW ] cos (cos[(ωRW + σRW )t + ξRW ]) dt

]

(50)

Noting that the time-varying functions under the integral signs are of the form I3 and I6 as

given by Equations 36 and 39 respectively, Equation 50 can be written as

Z
B

RW =
kDωRW

2π

[

(ωRW − δRW )2I3 − (ωRW + σRW )2I6

]

(51)

or simply

Z
B

RW =
−kDJ1(1)ωRW

2
(δRW + σRW ) (52)

Following a similar procedure for the left wing, it can be shown that

Z
B

LW =
−kDJ1(1)ωLW

2
(δLW + σLW ) (53)

The result for the z-body axis is important because it means that nonzero cycle-averaged

forces can indeed be generated and used to induce fore and aft linear accelerations. It can

also be used to generate rolling moments.

IX. Cycle Averaged Moments

In this section, expressions for the cycle-averaged aerodynamic moments are derived. The

cycle-averaged moments are later used in the development of a control law that requires an

evaluation of the change in cycle-averaged moments with respect to a change in the control

input variables.

A. Rolling Moment

Substituting the expression for the instantaneous x-body moment from Equations 15 and 16

into Equation 29 gives

Mx

B

RW =
ωRW

2π

[

∫ π

ωRW −δRW

0

MxRWU(t)dt +

∫ 2π

ωRW

π

ωRW −δRW

MxRWD(t)dt

]

(54)
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Substituting Equations 6, 21, 22, 26, and 27 into Equation 54 yields:

Mx
B

RW =
ωRW

2π

[

kDyWP
cp (ωRW − δRW )2

∫ π

ωRW −δRW

0

sin2[(ωRW − δRW )t]dt + . . .

kD

w

2
(ωRW − δRW )2

∫ π

ωRW −δRW

0

cos {cos [(ωRW − δRW )t]} sin2[(ωRW − δRW )t]dt + . . .

kD∆zB
R (ωRW − δRW )2

∫ π

ωRW −δRW

0

sin {cos [(ωRW − δRW )t]} sin2[(ωRW − δRW )t]dt − . . .

kD(ωRW + σRW )2yWP
cp

∫ 2π

ωRW

π

ωRW −δRW

sin2 [(ωRW + σRW )t + ξRW ] dt − . . .

kD(ωRW + σRW )2w

2

∫ 2π

ωRW

π

ωRW −δRW

sin2 [(ωRW + σRW )t + ξRW ]

cos {cos [(ωRW + σRW )t + ξRW ]} dt − . . .

kD(ωRW + σRW )2∆zB
R

∫ 2π

ωRW

π

ωRW −δRW

sin2 [(ωRW + σRW )t + ξRW ]

sin {cos [(ωRW + σRW )t + ξRW ]} dt ]

(55)

Note that the integrals are of the form given in Equations 34 - 39; thus, Equation 55 can be

written as

Mx

B

RW =
ωRWkD

2π

{

(ωRW − δRW )2
[

yWP
cp I1 + ∆zB

RI2 +
w

2
I3

]

−

(ωRW + σRW )2
[

yWP
cp I4 + ∆zB

RI5 +
w

2
I6

]}
(56)

Substituting the results for the definite integrals, I1 - I6, and simplifying yields

Mx

B

RW = −
kDωRW (δRW + σRW )

4

[

yWP
cp + wJ1(1)

]

(57)

Following a similar procedure for the left wing, it can be shown that

Mx
B

LW =
kDωLW (δLW + σLW )

4

[

yWP
cp + wJ1(1)

]

(58)

Note that without split-cycle frequency modulation, i.e., δRW = σRW = δLW = σLW = 0, it

would not be possible to generate non-zero cycle-averaged rolling moments on this aircraft.

Thus, because of the constraints resulting from the minimally actuated vehicle design, split-

cycle modulation is a sufficient condition for generating rolling control moments for the

proposed aircraft.
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B. Pitching Moment

The instantaneous y-body moment is determined by substituting Equations 15 and 16 into

Equation 29

My
B

RW
=

ωRW

2π

[

∫ π

ωRW −δRW

0

MyRWU
(t)dt +

∫ 2π

ωRW

π

ωRW −δRW

MyRWD
(t)dt

]

(59)

Substituting Equations 6, 21, 22, 26, and 27 into Equation 59 yields:

My

B

RW
=

ωRW

2π

{

(ωRW − δRW )2

[

kL∆zB
R

∫ π

ωRW −δRW

0

sin2[(ωRW − δRW )t]dt + . . .

−kD∆xB
R

∫ π

ωRW −δRW

0

sin2[(ωRW − δRW )t] cos {cos(ωRW − δRW )t} dt + . . .

−kLxWP
cp cos α

∫ π

ωRW −δRW

0

sin2[(ωRW − δRW )t] cos {cos [(ωRW − δRW )t]} dt + . . .

−kDxWP
cp sin α

∫ π

ωRW −δRW

0

sin2[(ωRW − δRW )t] cos {cos [(ωRW − δRW )t]} dt + . . .

kLyWP
cp

∫ π

ωRW −δRW

0

sin2[(ωRW − δRW )t] sin {cos [(ωRW − δRW )t]} dt

]

+ . . .

(ωRW + σRW )2

[

kL∆zB
R

∫ 2π

ωRW

π

ωRW −δRW

sin2 [(ωRW + σRW )t + ξRW ] dt + . . .

kD∆xB
R

∫ 2π

ωRW

π

ωRW −δRW

sin2 [(ωRW + σRW )t + ξRW ]

cos {cos [(ωRW + σRW )t + ξRW ]} dt + . . .

kLxWP
cp cos α

∫ 2π

ωRW

π

ωRW −δRW

sin2 [(ωRW + σRW )t + ξRW ]

cos {cos [(ωRW + σRW )t + ξRW ]} dt + . . .

kDxWP
cp sin α

∫ 2π

ωRW

π

ωRW −δRW

sin2 [(ωRW + σRW )t + ξRW ]

cos {cos [(ωRW + σRW )t + ξRW ]} dt + . . .

kLyWP
cp

∫ 2π

ωRW

π

ωRW −δRW

sin2 [(ωRW + σRW )t + ξRW ]

sin {cos [(ωRW + σRW )t + ξRW ]} dt ]}

(60)
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Note that the integrals are of the form given in Equations 34 - 39; thus, Equation 60 can be

written as

My
B

RW
=

ωRW

2π

{

(ωRW − δRW )2
[

kL∆zB
RI1 − kD∆xB

RI3 − kLxWP
cp cos αI3−

kDxWP
cp sin αI3 + kLyWP

cp I2

]

+ (ωRW + σRW )2
[

kL∆zB
RI4+

kD∆xB
RI6 + kLxWP

cp cos αI6 + kDxWP
cp sin αI6 + kLyWP

cp I5

]}

(61)

Substituting the results for the definite integrals, I1 - I6, and simplifying produces

My

B

RW
=

kLωRW

2

[

xWP
cp J1(1) cosα(δRW + σRW ) +

∆zB
R

2
(2ωRW + σRW − δRW )

]

+ . . .

kDJ1(1)ωRW

2

{

(δRW + σRW )
[

xWP
cp sin α + ∆xB

R

]}

(62)

Following a similar procedure for the left wing, it can be shown that

My

B

LW
=

kLωLW

2

[

xWP
cp J1(1) cos α(δLW + σLW ) +

∆zB
L

2
(2ωLW + σLW − δLW )

]

+ . . .

kDJ1(1)ωLW

2

{

(δLW + σLW )
[

xWP
cp sin α + ∆xB

L

]}

(63)

Note that without split-cycle frequency modulation, i.e., δRW = σRW = δLW = σLW = 0,

there still exists a non-zero cycle-averaged pitching moment if ∆zB
R 6= 0 and ∆zB

L 6= 0.

This result yields further insight into vehicle design for controllability. It suggests that the

wing root hinge point should be placed such that its z-body location is coincident with the

nominal vehicle center-of-gravity, i.e., ∆zB
R = 0, ∆zB

L = 0. Such an arrangement will yield

a zero cycle-averaged pitching moment when the split-cycle parameters are zero, which is

a desirable feature for maintaining hover. Note that the current Harvard RoboFly aircraft

does not incorporate this feature and would immediately pitch forward if not constrained

by the guide wires used in their experiment. Later, the effect of a bob-weight actuator, that

can be used to manipulate pitching moments, will be examined.

C. Yawing Moment

The instantaneous z-body moment is determined by substituting Equations 15 and 16 into

Equation 29 to obtain

Mz

B

RW =
ωRW

2π

[

∫ π

ωRW −δRW

0

MzRWU(t)dt +

∫ 2π

ωRW

π

ωRW −δRW

MzRWD(t)dt

]

(64)
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Substituting Equations 5, 21, 22, 26, and 27, into Equation 64 yields:

Mz
B

RW =
ωRW

2π

{

(ωRW − δRW )2

[

−kL

w

2

∫ π

ωRW −δRW

0

sin2[(ωRW − δRW )t]dt − . . .

kD∆xB
R

∫ π

ωRW −δRW

0

sin2[(ωRW − δRW )t] sin {cos(ωRW − δRW )t} dt − . . .

kLyWP
cp

∫ π

ωRW −δRW

0

sin2[(ωRW − δRW )t] cos {cos [(ωRW − δRW )t]} dt − . . .

kLxWP
cp cos α

∫ π

ωRW −δRW

0

sin2[(ωRW − δRW )t] sin {cos [(ωRW − δRW )t]} dt − . . .

kDxWP
cp sin α

∫ π

ωRW −δRW

0

sin2[(ωRW − δRW )t] sin {cos [(ωRW − δRW )t]} dt

]

+ . . .

(ωRW + σRW )2

[

−kL

w

2

∫ 2π

ωRW

π

ωRW −δRW

sin2 [(ωRW + σRW )t + ξRW ] dt + . . .

kD∆xB
R

∫ 2π

ωRW

π

ωRW −δRW

sin2 [(ωRW + σRW )t + ξRW ] sin {cos [(ωRW + σRW )t + ξRW ]} dt − . . .

kLyWP
cp

∫ 2π

ωRW

π

ωRW −δRW

sin2 [(ωRW + σRW )t + ξRW ] cos {cos [(ωRW + σRW )t + ξRW ]} dt + . . .

kLxWP
cp cos α

∫ 2π

ωRW

π

ωRW −δRW

sin2 [(ωRW + σRW )t + ξRW ]

sin {cos [(ωRW + σRW )t + ξRW ]} dt + . . .

kDxWP
cp sin α

∫ 2π

ωRW

π

ωRW −δRW

sin2 [(ωRW + σRW )t + ξRW ]

sin {cos [(ωRW + σRW )t + ξRW ]} dt ]}

(65)

Note that the integrals are of the form given in Equations 34-39; thus, Equation 65 can be

written as

Mz

B

RW =
ωRW

2π

{

(ωRW − δRW )2
[

−kL

w

2
I1 − kD∆xB

RI2 − kLyWP
cp I3−

kLxWP
cp cos αI2 − kDxWP

cp sin αI2

]

+ (ωRW + σRW )2
[

−kL

w

2
I4+

kD∆xB
RI5 − kLyWP

cp I6 + kLxWP
cp cos αI5 + kDxWP

cp sin αI5

]}

(66)

Substituting the results for the definite integrals I1-I6, and simplifying yields

Mz

B

RW =
−kLωRW

2

[(

yWP
cp J1(1) +

w

4

)

(2ωRW − δRW + σRW )
]

(67)
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Following a similar procedure for the left wing, it can be shown that

Mz
B

LW =
kLωLW

2

[(

yWP
cp J1(1) +

w

4

)

(2ωRW − δRW + σRW )
]

(68)

Without split-cycle frequency modulation, there exists a non-zero cycle-averaged yawing

moment on each wing since yWP
cp 6= 0 and w 6= 0. When the split-cycle parameters for each

wing are zero, the cycle-averaged moments are opposing and balance one another. Since

the fundamental wing beat frequency, ω, can be independently varied for each wing, yawing

moments can be generated without varying the split-cycle parameters.

X. Summary

The analysis presented shows that the use of split-cycle constant-period frequency modu-

lation, with independently actuated wings, allows manipulation the x-body and z-body axis

forces. The y-body force is not directly controllable using the split-cycle approach as pre-

sented. Direct manipulation of the y-body force, given the physical design constraints of the

proposed vehicle, would require that the frequency of the oscillators driving the wings be var-

ied more than once per cycle. Rolling and yawing moments can also be independently varied

using the split-cycle technique. A pitching moment can be generated; however, it cannot be

generated independently of the z-body force or the rolling moment. In Part II, a bob-weight

is introduced to cancel these undesirable changes in the pitching moment when manipulating

the split-cycle parameters to generate z-body forces and rolling moments. Given the ability

to independently manipulate 5 out of the 6 cycle-averaged body-axis forces and moments,

untethered controlled flight with insect-like maneuverability appears to be feasible.
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